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Effects of small streamline curvature on turbulent duct flow 
By I .  A.  HUNT? A N D  P.N. JOUBERT 

Department of Mechanical Engineering, University of Melbourne, Parltville, Australia 

(Received 15 October 1976 and in revised form 1 May 1978) 

Mean velocity profiles, turbulence intensity distributions and streamwise energy 
spectra are presented for turbulent air flow in a smooth-walled, high aspect ratio 
rectangular duct with small streamwise curvature, and are compared with measure- 
ments taken in a similar straight duct. 

The results for the present curved flow are found to differ significantly from those for 
the more highly curved flows reported previously, and suggest the need to  distinguish 
between ‘shear-dominated ’ flows with small curvature and ‘ inertia-dominated ’ flows 
with high curvature. Velocity defect and angular-momentum defect hypotheses fail 
to correlate the central-region mean flow data, but the wall-region data are consistent 
with the conventional straight-wall similarity hypothesis. A secondary flow of Taylor- 
Goertler vortex pattern is found to occur in the central flow region. 

An examination of the flow equations yields a model for the mechanisms by which 
streamline curvature affects turbulent flow, in which a major effect is a direct change 
in the turbulent shear stress through a conservative reorientation of the turbulence 
intensity components. Data for the streamwise and transverse turbulence intensities 
show behaviour consistent with that expected from the equations, and the distribution 
of total turbulence energy in the central flow region is found to be nearly invariant 
with Reynolds number and wall curvature, in agreement with the model. 

Energy spectra for the streamwise component are examined in terms ofa Townsend- 
type two-component turbulence model. They indicate that a universal, ‘active ’ 
component exists in all flow regions, with an ‘inactive’ component which affects only 
the low wavenumber spectra intensities. This is taken to  imply that the effects of 
streamline curvature are determined by the central-region flow structure alone. 

1. Introduction 
The investigation reported here is an attempt to isolate and study the effects of 

small streamline curvature on a simple shear flow, that of air in a smooth-walled 
rectangular duct of sufficiently high aspect ratio that the mid-plane flow is essentially 
two-dimensional. The flow in a straight duct was examined first to provide a datum 
which the curvature effects could be assessed. The flow in a curved duct was then 
examined; the majority of the available data is restricted to mean flow studies of 
strongly curved flows, and neither these data nor the more sparse turbulence data 
indicate any clear means of quantifying the effects of curvature. The radius of curvature 
chosen for the present study was large compared with that of other investigations, 
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FIGURE 1.  General arrangement of tunnel. Plan view, not to scale. 

in an attempt to obtain a ‘perturbed straight flow ’ rather than a flow dominated by the 
effects of streamline curvature. The curved duct was as far as practically possible 
identical with the straight duct in all respects except its curvature, and the flow in it 
was examined using identical instruments and techniques. 

2. Apparatus and methods 
2.1. Duct details 

The open-return blower tunnel is shown in schematic form in figure 1. The ducts were 
formed by a single pair of stiffened acrylic-sheet side walls bolted to straight and 
curved pairs of extruded aluminium channel end walls. The total length of the duct 
was 7 5 0  (where D is the nominal duct width, 63.5 mm), the aspect ratio was 13.2 and 
the maximum Reynolds number obtainable was 190 000 (based on D and the maximum 
velocity Urn). The curved duct had a constant mean radius of curvature ‘i. = 1000, 
and was mounted tangential to the tunnel centre-line at  the contraction exit: The 
entry boundary layers were tripped by a row of pin-type stimulators on each wall a t  
2 0  from the contraction exit plane. Static pressure tappings and measurement stations 
were provided along the centre-line of each wall a t  multiples of D ,  measured from the 
contraction exit plane as origin, and complete access to the flow cross-section was 
obtained by inserting probes upstream from the duct exit plane at  7 5 0 .  

2.2. Mean $ow measurements 

Axial static pressure gradients were obtained from the wall pressure tappings. Radial 
static pressure gradients in the curved duct were obtained from the axial pressure 
gradient data. The static head difference between inner and outer walls was approx- 
imately 2% of the mean velocity head, and a linear variation of static pressure across 
the duct could be assumed with negligible error. 

Mean velocities were measured by flattened total-head probes working against the 
wall static pressure tappings, corrected on the above basis for radial static pressure 
variation, and the probes were calibrated against an N.P.L.-type substandard Pitot- 
static tube. Subsidiary mean velocity data obtained during hot-wire anemometer 
measurements were used as a check on the low velocity data, but were not considered 
to be sufficiently accurate at  higher velocities. 
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The shear velocity u, was obtained by the Clauser-chart method (Clauser 1954), 
using the universal logarithmic-law constants ( K  = 0.41, A = 5.0) suggested by Coles 
(1968). Preston tubes were also used with the calibration curves of Pate1 (1965), 
and gave estimates within 2% of the Clauser-chart values in all cases. Use of the axial 
pressure gradient to determine shear velocities was considered to  be unreliable, owing 
to the sensitivity of the method to  small mean flow accelerations, but check 
calculations for the fully developed flow gave good agreement with the mean values 
derived from the Clauser-chart method. 

2.3. Turbulence meccsurements 

An unlinearized constant-temperature hot-wire anemometer of the type described in 
Perry & Morrison (1971 a )  was used, and the dynamic calibration technique given in 
Perry & Morrison (1971 b)  was adopted to obtain the small-perturbation velocity 
sensitivity of the whole system directly, without recourse to  assumptions of heat- 
transfer laws, or to curve fitting or numerical differentiation of calibration data. Run 
data were rejected if recalibration after a run failed to  agree with the initial calibra- 
tion within 2 yo of sensitivity. Wollaston wire elements 4 pm and 5 pm in diameter 
and 0.8-1.2mm long were used for measurements of the streamwise (r.m.s.) 
intensity G. To avoid position errors caused by wire bowing due to thermal expan- 
sion, a short-range telescope focused on the active section of the wire and its reflexion 
in the wall was normally used to determine the wall distance y near the wall. The data 
were obtained as ensemble averages, over total periods of u p  to 2 min per point to 
ensure convergence of the mean, and were corrected for ambient temperature changes 
only. The total uncertainty in the ii data is estimated as 5 2 yo. 

The transverse r.m.s. turbulence intensities .i; and 6 and (kinematic) Reynolds 
stresses - UV and - UW were obtained from similar cross-wire techniques, using 
tungsten wires 5 pm in diameter and 1-2 mm long. The dynamic calibration procedures 
detailed in Morrison, Perry & Samuel (1972) were used, obviating the need for assump- 
tions of wire angles, matching of wire sensitivities or matching of anemometer 
channels. The cross-wire technique, however, remains inherently less accurate than 
the single normal wire procedure for G, especially when Reynolds stresses are to be 
obtained, and the uncertainty in these measurements is estimated as f 5 yo. 

Energy spectra for the streamwise component 2 were obtained from a propor- 
tional-pass-band filter system, set to give a nominal pass-band of 5 I0 yo of the centre- 
frequency over a measurement range of 0.2Hz to  10lrHz. The pass-banc't shape was 
confirmed by measurement to be independent of the centre-frequency. Total sampling 
times of up to 50 mean periods were necessary to ensure mean convergence in the low 
frequency data. System offsets were zeroed for each reading and system noise was 
subtracted to  obtain the true levels. The wires were 4pm in diameter and 0.8-1-2 mm 
long, and the measured spectra were corrected for wire length effects using the method 
of Wyngaard (1968). 

Further details of the apparatus and techniques are given in Hunt & Joubert 
(1978), together with a listing of data. A more complete analysis of the straight duct 
flow is given in Hunt & Joubert (1977). 

22-2 
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FIGURE 2. Axes and sign conventions. (a) Straight stationary duct. ( b )  Straight rotating duct. 
(c) Curved stationary duct. 

3. Analysis 
It is convenient to examine the hypotheses available for flows with streamline 

curvature in terms of the basic equations for fully developed, two-dimensional, 
incompressible steady flow in: 

(a)  a straight stationary smooth-walled duct, 
( b )  a similar straight duct rotating about an axis parallel to its walls and perpendic- 

(c) a smooth-walled duct with constant radius of curvature. 
The second case provides a useful ‘bridge ’ between the other two. The terminology 

and sign conventions used here are given in figure 2. The ‘left-handed’ definition 
adopted for !2 allows streamline turning rates !2 and U / r  to be defined consistently 
as positive for the stabilized wall flows in both rotating and curved duct flows. 

ular to the flow direction, 

The momentum equations for the streamwise (x, $) direction are 

The transverse (y ,  r )  momentum equations are 

lap a2 
Pay aY ’ 

0 = 
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( 2 c )  

With the boundary condition VW = 0 a t  the wall, the 2 momentum equations all yield 
Z@ = 0 over the whole flow field. 

Following the practice of workers concerned with rotating flows (see, for example, 
Moon 1964; Halleen & Johnston 1967), the term in braces in (1 b )  may be written as 

where P* = P - $pR2x2 is the ‘reduced pressure’. The reduced pressure gradient is 
then the gradient in excess of that  required for equilibrium in the imposed acceleration 
field, and the term taken as a whole has the same physical significance as the stream- 
wise pressure gradient terms for the other two flows. 

The concept may be extended to allow the terms in braces in ( 2  b, c) to be interpreted 
as reduced transverse pressure gradients, carrying the same physical significance as 
the simpler transverse pressure gradient term in ( 2 a ) .  

Comparison of ( l a )  with (1 b ) ,  and (Za)  with ( 2 b )  shows that streamline rotation has 
no effect on the form of the viscous or turbulent shear-stress terms, nor on the trans- 
verse Reynolds-stress gradient term. The apparent ‘extra terms ’ in the curved flow 
equations arise from their development as moment of momentum balances for an 
axisymmetric element, but the straight flow equations can, of course, be developed as 
limiting cases of the same balances, and no additional or essentially different physical 
processes are implied by the terms. A particular direct point of comparison is the 
expression for total kinematic shear stress, which has the common form 

r /p  = v x (rate of strain of mean flow) - UV 

v aU/ay - UV for the straight flows, = r  v (aU/ar - U/r)  - ;liV for curved flow. 

The mean flow kinetic energy balance under the present restrictions reverts in each 
case to  the form 

0 = U x  (streamwise momentum equation). 

The extra term -ii@21J/r which occurs in the curved flow equation is then seen to 
form part of the complete term UrP2 ar( -Ti%)/&-, which is directly comparable to the 
straight flow term Ua( - UV)/ay, and again no additional physical process is implied. 
The mean flow equationsfor all three cases are then essentially identical, and offer little 
guidance to  a mechanism by which streamline curvature or rotation can have their 
marked effects on turbulent duct flow. 

Various attempts have been made to predict mean velocity profiles in curved flows 
from the momentum considerations, but they have had limited success The classical 
Prandtl(l93 1 )  extension of his mixing-length argument significantly underestimates 
the effect of curvature on wall-region flow, and Bradshaw (1969) found that his 
generalization of the theory could not give an adequate representation of the profile 
(in this case for the rotating-duct data of Halleen & Johnston 1967). Rotta (1967) 
used a mixing-length approach to obtain a deviation from the normal straight-wall 
logarithmic law, parametric in the wall radius Reynolds number rwuT/v,  but again 
this significantly underestimates the effect of curvature. 
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Predictions of the central-region mean flow have been based on Taylor’s (1935) 
extension of the vorticity transport theory, and on von KArmAn’s (1951) extension of 
the ‘ mechanical similitude’ concept (see, for example, Wattendorf 1935; Marris 1956, 
1960; Kinney 1967; Ellis & Joubert 1974). The predictions at  best give limited correla- 
ation only, and this is restricted to highly curved flows. Probably the most successful 
was Wattendorf’s proposal of an angular-momentum defect equation in the form 

K ,  - Ur up - u 
as a function of Y- 

1 aP bP’  (3) 
or 

1 i3P 

where rp is the radius at  which Ur = K,, the maximum value, bp is the distance from 
this radius to the wall, and Up is the ‘potential velocity’ as used by later investigators 
(Up r = K l ) .  This is found to give coincidence of central-region data from both inner 
and outer walls of highly curved flows (see also Yeh, Rose & Lien 19561, but the 
profile obtained varies in shape as the duct curvature alters, and differs from the 
limiting straight-wall profile shape. 

More recent proposals have been based on the turbulence energy and turbulent 
shear-stress correlation equations. In contrast to the mean flow equations, these 
equations include terms representing identifiable additional physical processes due 
to streamline curvature or rotation. Under the present restrictions, the equations for 
the three flows take the following forms: for the streamwise component u, 

for the transverse component v, 

for the transverse component w, 
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Summation of (4)) (5) and (6) for each flow gives the equations for the total turbulence 
energy 442 = i(U2 +v2 + 2) : 

i a F v  1 a -  - - - __ au 
0 = -------vq2+v u v ~ u + v v ~ v + w v ~ w )  -uv-, 

Pay 2aY ( aY 

The equation for the turbulent kinematic shear stress (Reynolds stress) - UV are 

Following Townsend (1956) and Hinze (1959), the physical significance of the 

First term = the transport of turbulent energy by fluctuating pressure gradients. 
Second term = the diffusion of energy by fluctuating transverse velocity gradients. 
Third term = dissipation and diffusion of energy by viscous stresses. 
Fourth term = production of turbulence energy, i.e. extraction of energy from the 

mean flow, by the interaction of turbulent shear stresses with the rate of strain of the 
mean flow. The form of this term is (turbulent shear stress x rate of strain of mean flow) 
in each case. 

first four terms in each equation may be given as follows: 

The terms in the shear stress equations have corresponding meanings. 
The interpretation of the final terms is less well agreed upon. For (4) and (5) the 

terms are 1- UV x 2 0  and UV x 2U/r, where the (small) triple velocity correlation is 
ignored here for convenience. They are commonly treated as additional ‘production ’ 
terms, see, for example, Bradshaw (1969, 1973) and Eskinazi & Yeh (1956)) where 2Q 
and 2U/r are viewed as extra rates of strain of the mean flow, and the terms are 
added to the fourth terms of their equations. 

The total ‘production’ terms for the streamwise component u then become 

in (4 b )  and 

in (4c), i.e. of the form (turbulent shear stress) x (vorticity of mean flow relative to 
stationary axes). 

‘ Production ’ terms then also appear for the transverse component v, + UV x 21R in 
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(5b) and + U V x  2Ulr in ( 5 c ) .  For ;lizj negative, i.e. positive shear stress, and R or 
U l r  positive the interpretation entails the concept of 'negative production', 
implying the reordering of the random fluctuating velocities so that they return 
energy to the mean flow, at the same rate as the (presumably normal) extra 
positive production removes energy from the mean flow. Eskinazi & Erian (1969) 
give a discussion of this phenomenon, and adduce some evidence for its existence, 
but the physical flow mechanism which would give negative production remains 
obscure. 

The terms arise from the need to include Coriolis forces in the analyses, when axes 
rotating relative to an inertial frame are chosen. Batchelor (1967, 3 7.6) notes that 
'The Coriolis force. . . is a deflecting force which does no work on a material element '. 
The conservative nature of the Coriolis force terms, as distinct from the non-conserva- 
tive fourth terms (production terms), is of course illustrated by their absence from 
the equations (7) for the total turbulence energy. 

Batchelor's discussion and that of Traugott and Yeh (Traugott 1958) support the 
interpretation of the final, ' Coriolis ' terms in (4) and (5) as representing a conservative 
reorientation, or transfer of energy from the streamwise direction (x, q5) to the trans- 
verse direction (y, r ) ,  or vice versa depending on the signs of !2 or U / r  and UV. Under 
this interpretation, turbulence energy is produced by the mean flow strain rate on the 
streamwise component u alone in all three flows; fluctuating pressure and velocity 
gradients redistribute the energy to the other components and viscous stresses diffuse 
and dissipate the energy in the same way. The additional effect of streamline curvature 
or rotation is then to produce an 'energy pump' effect by which some of the existing 
energy is transferred without loss between the components in the plane of streamline 
curvature. 

Equations (8) for the shear stress - UV yield extra terms - (2 - 3) x 2Q in addition 
to the straight stationary (wall) flow term - v 2  aU/ay, for straight rotating flow, 
and' similar terms for the curved flow. 

Here, for positive rotation R (or U / r  for curved flow), a positive fluctuation u 
gives rise to a positive acceleration in the v direction and vice versa, so the existence 
of streamwise energy u'i leads to a positive change in the TiE correlation, i.e. a negative 
change in the shear stress - UV. Conversely, a positive transverse fluctuation u gives 
rise to a negative acceleration in the u direction, and vice versa, so the existence of 
transverse energy 3 leads to a negative contribution to UV,  i.e. a positive change in 
shear stress -UV. Unless 2 = 7, the net effect is to introduce a highly structured 
component into the - UV correlation. 

If 2 > u", which is the case in duct flows, especially near the walls (see, for example, 
Comte-Bellot 1963; Laufer 1950; Eskinazi & Yeh 1956)) positive rotation R or U/ r  
gives a negative net change in the rate of production of the shear-stress correlation 
- UV. Also, in a region in which the shear stress - UV is positive, positive rotation or 
curvature leads to a transfer of energy from 2 to u", tending to increase the difference 
between them and so make the negative change in - UV larger. 

The fractional change in-UV for small values of rotation or curvature may then 
be large, and the mechanism described appears capable of accounting for the major 
differences between straight and curved or rotating flows, without the need to pro- 
pose the existence of special, additional 'production' and 'negative production' 
processes. 

- 
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Bradshaw (1969,1972,1973) pointed out the analogy between streamline curvature 
and buoyancy, and by reference to meteorological practice obtained an equation 

Here /3 and y are constants initially estimated from meteorological data, and NRi 

represents the curved and rotating flow analogues of the ‘gradient ’, ‘flux ’ and ‘stress’ 
Richardson numbers relating corresponding streamwise and transverse quantities in 
buoyant flows. Land Lo are the curved or rotating and straight, stationary flow values 
respectively of the dissipation length parameter used in Bradshaw, Ferriss & Atwell’s 
( 1967) boundary-layer calculation method. I n  his comprehensive review paper 
(1973) Bradshaw notes that y = 10 is required to  fit data for curved and rotating 
flows at small NRi,  implying that the shear-stress distribution is an order of magnitude 
more sensitive to these effects than was predicted by Prandtl. He recommends speci- 
ficallv that 

14 for corvex wall boundary layers, 

9 for concave wall boundary layers. Y = {  

If y is taken to be the ratio of the extra shear-stress ‘production’ terms, in (8 b )  and 
( 8 c ) ,  to the production term in straight stationary wall flow, E2aU/ay in ( s a ) ,  then 

- -  
y = 2(u2/v2- 1). (10) 

Wall region data for straight ducts (see, for example, Comte-Bellot 1963) show that 
u2/v2 is x 5 in the logarithmic region, and higher near the position of maximum 
turbulence energy production. Equation (10) then gives y = 8 as a low estimate, 
and it appears that as a first approximation Bradshaw’s arbitrary constant y can be 
obtained from straight stationary wall turbulence data. The proposal can be carried 
further in terms of the ‘ feedback‘ effect of the energy transfer term discussed earlier, 
and yields second-order estimates of y of similar size and ratio to those given in (9b). 
The present interpretation of the processes represented then appears to provide a 
direct line of support for Bradshaw’s model. Irwin & Smith (1975) include a form of 
small curvature correction in their calculation method, and find the eddy viscosity 
then derived from a detailed modelling of energy and shear-stress equation terms to be 
strongly dependent on curvature. The models are, however, limited by the inevit- 
able defects of the mixing length and eddy viscosity approaches, most importantly 
that of determining parameters as a function of a single location in the flow, and 
the precise form of the modelled terms cannot be expected to  have general validity. 
A more general approach perhaps based on regional definitions of the ‘active’ and 
‘inactive ’ parameters in the two-component turbulence model described by Townsend 
(1961) appears preferable, but no recent attempts are known to the authors. 

- -  

4. Results and discussion 

4.1. Mean flow 
The flows were investigated for three principal Reynolds numbers: R, = DU,,/v 
= 30000, 60000 and 130000, where D = duct width, U, = maximum velocity and v 
= kinematic viscosity. 
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FIGURE 3 (a). For legend see next page. 

Flow symmetry checks indicated small variations in the velocity profile in the 
central flow region of the curved duct, and a more extensive investigation of the mean 
flow profile over the whole duct exit cross-section was carried out for R, = 60000. 
The data for figure 3 (a )  were obtained as a series of traverses at constant y / D  and at  
constant z/D,  at the positions indicated. Interpolation then gave lines of constant 
velocity ratio, and revealed the cellular structure shown. 

The data were taken on four separate occasions, and were taken in a deliberately 
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FIGURE 3. Mean flow at (a) curved and ( b )  straight duct exit plane, RN = 60000. Scale change 
x 4 between horizontal and vertical axes. 

non-regular order so that the effects of possible small periodic variations in external 
parameters such as the tunnel reference head could be readily distinguished from the 
real variation in the flow pattern. The structure appeared to be stable in its position 
relative to the duct walls; the small inconsistencies remaining in the data occurred 
without a regular pattern, and could not be attributed to  a spanwise shifting of 
the structure. 

The results for the straight duct, obtained from a similar series of tests, are shown 
for comparison in figure 3 ( b ) .  The end-wall vortex systems in the curved duct appear 
to fix the position of the central region structure although Patel (1968) found the 
cross-flow structure on the central region of his curved boundary layers to be indepen- 
dent of end-wall conditions. Meroney & Bradshaw (1975) also remark on the posi- 
tional stability of the spanwise structure found in their concave-wall boundary layer, 
and consider it to be a response to fixed upstream disturbances. 

The structure may be interpreted as being due to an array of Taylor-Goertler 
vortices in the outer part of the central flow; the estimated spanwise positions of the 
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FIGURE 4. Mean flow development in (a) curved and (b )  straight duct: z /D = 0, R, = 60000. 

vortices and their senses of rotation are shown in the figure. The mean spacing of vortex 
axes in the outer flow 0-440, but closer inspection leads to the interpretation of the 
pattern as being due to an array of comparatively strong vortex pairs a t  0.400 spacing, 
with 1.460 mean spacing between successive pairs, and with weaker, secondary 
vortex pairs in the intervening spaces. The variation of the Preston tube measurements 
of shear velocity indicate the effects of this structure on the flow very near the outer 
wall. 

The deviations of the contours in the inner flow region are consistent with the 
existence of a weak circulating cross-flow driven by the outer-flow vortex array; the 
wavelength of the deviations is nearly uniform, with 1 . 4 2 0  the average value for 
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0, outer wall; A, inner wall; 0, straight wall. 

z / D  < + 2, and the amplitudes of deviations in the inner region are much less than 
the comparable outer-region amplitudes. Minimum deviation amplitudes occur for 
y i /D  = 0.38 (where yi is distance from the inner wall), which may be taken as indi- 
cating near-zero cross-flow velocity V at this surface. This implies a distinct separ- 
ation between outer and inner flows similar to that obtained by Taylor (1923) for 
viscous flow between rotating cylinders, but the assumed cross-flow senses within 
the regions are not compatible with this model. However, the major part of the 
recirculating flow does appear to be confined t o  the outer region. 

Following the discussion by So & Mellor ( I  975) of the vortex stability work of Smith 
(1955) and Tani (1962), the present data give a turbulent Goertler number G, = 0-87, 
a vortex spacing parameter a0 = 0.57 and a curvature parameter a? = 1430, where the 
outer wall momentum thickness 6' and overall mean vortex spacing 0 . 4 4 0  = 2n/a 
have been used. The flow is then predicted to be marginally stable, but the data point 
falls in the same proximity to the stability boundary as those of Tani for aflow observed 
to be marginally unstable,-similar to the present case. 

The flow-visualization studies of rotating duct flow reported in Halleen & Johnston 
(1967), Lezius & Johnston (1971) and Johnston, Halleen & Lezius (1972) gave clear 
evidence of the existence of Taylor-Goertler vortex systems. I n  the second study, a 
flow stability analysis gave a small lower limit of the rotation parameter for the 
existence of the vortex pattern. I n  their tests, the experimenters were careful to 
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FIGURE 6. Wall-shear velocity measurements. 0, outer wall; 0 ,  inner wall; 0, mean, 
from shear stresses; ---, mean, from pressure gradient. (a) RN = 30000. ( b )  RN = 60000. 
(c) RN = 130000. 

distinguish the vortex pattern from end-wall induced secondary flows and from 
wall flow structures of the types described by Kline et al. (1967), Kim, Kline & Reynolds 
(1971) and others (these structures were also observed in the rotating duct flow), and 
the existence of vortex systems when the rotation parameter exceeds a specifiable 
minimum value seems well confirmed. The specific stability limit given by Lezius & 
Johnston was RO=i2D/D=0.022, where D is the bulk mean velocity. When the 
present correspondence of terms is applied, the mean streamline turning rate a/!? may 
be proposed to replace i2, and the analogous curved flow parameter becomes simply 
D/F, equal to 0.01 in the present case. The existence of the vortex structure then 
indicates that, if the analogy holds in these broad terms for stability determinants, 
curved duct flow is significantly less stable than rotating straight duct flow. 

The rest of the data were taken in the centre-line plane of the ducts, z / D  = 0. 
Figure 3(a) indicates that spanwise gradients due to the secondary flow were near maxi- 
mum a t  this position, and the good repeatability found for the data provides further 
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FIGURE 8. Position of surface zero shear stress, Symbols as in figure 7.  ---, laminar flow relation. 

confirmation of the positional stability of the central flow structure. The small in- 
consistencies remaining in some of the curved flow data were probably due to  small 
errors in setting traverse position, rather than shifting of the flow structure. 

The development of the mean velocity profile for each duct is shown for one Reynolds 
number in figures 4 (a )  and ( b ) .  The evolution of the final profile shape for the present 
small curvature follows a very similar pattern to  that for the straight flow. Figure 5 
gives a comparison of displacement thickness S* and momentum thickness for the 
developing flows. Figure 6 shows the variation of the inner and outer wall shear velo- 
cities uTi and u , ~  with streamwise position and Reynolds number, and compares the 
independent estimates of the mean shear velocity, defined by ii, = [(u;p? + ~;~rE)/2i;2]* 
from moment equilibrium requirements, where ri ,  ro and i; are the inner, outer 
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FIQURE 9. Similarity proposal of Wattendorf (1935). 0 ,  Wattendorf (1935), inner and outer 
walls; A, Eskinazi & Yeh (1956), inner and outer walls;O, present inner-walldata; 0, present 
outer-wall data; , present straight-wall data. 

and mean wall radii respectively, and U, = ( - D/2p x BPIFaQ)’ from the measured 
static pressure gradients. 

The upstream flow outside the boundary layers was irrotational, but the present 
flow shows no marked tendency to assume an irrotational profile (Ur = constant) 
at  full development, which was a characteristic of most of the earlier, more highly 
curved flowsinvestigated. Figure 7 illustrates this by comparing the angular momentum 
profiles obtained. Figure 8 shows the corresponding data, where available, for the 
position of the surface of zero shear stress, where bi is the radial distance between the 
inner wall and the surface of zero shear stress. For the present data, bi was obtained 
from the wall shear velocity measurements, using a linear approximation to the total 
shear-stress distribution. For the duct curvature used here the approximation gives 
negligible error, and the procedure is much more accurate than either the use of 
cross-wire measurement to locate -UV = 0 or estimation of the point of zero strain 
rate aU/ar - U / r  = 0 from the mean velocity profiles. 

Figures 7 and 8 demonstrate the possibility of distinguishing between ‘inertia- 
dominated’ and ‘ shear-dominated ’ classes of curved duct flows, and the need for the dis- 
tinction. The ‘ inertia-dominated ’ flows are characterized by a near-irrotational mean 
velocity profile at  full development, and share a common geometric position of the sur- 
faceofzero shear stressrelative to theduct walls. The ‘ shear-dominated’ flowsexhibitno 
significant regions of irrotational flow, and their position of zero shear stress is strongly 
dependent on the degree of curvature of the flow; Wattendorf’s (1935) similarity pro- 
posal (3) may assist in the distinction. Figure 9 gives a comparison of the present data for 
straight and curved flows (withinthe ‘shear-dominated ’ class) with the mean flow data 
from the experiments of Wattendorf and Eskinazi & Yeh (1956) (in the ‘inertia- 
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FIGURE 10. Mean velocity profiles in wall-law co-ordinates. x / D  = 75. A, U / U ,  = 1/0.41 x 
In yu,/v+5.0 (Coles 1968);  B,  r,u7/v= +20000 (Rotta 1967);  C ,  rwu7/v= -20000 (Roth) .  
Present values of rwu,/v are as shown. 

dominated ’ class). The differences between the proposed classes of curved flow are 
clear. 

Direct comparison of the wall-region mean flow data for the present three wall 
curvature cases is made in figure 10, where the conventional (straight) wall-similarity 
co-ordinates are used. In  this and all subsequent figures, the shear velocity used is 
that  for the adjacent wall. A constant wall-distance correction of 0.15 x probe 
height has been applied to all data, following the procedures of Pate1 & Head (1969). 
Representative curves from Rotta’s (1967) paper are also given, and their relation to 
the present data is similar to that found by previous workers. 

The common logarithmic region is to some extent a product of the Clauser-chart 
technique by which the shear velocities were determined, but figure 6 demonstrates 
independent support for the estimates. The common region of the profiles extends 
closer to the wall than the logarithmic region, and the differences between profiles are 
confined to the central flow region. 

The result may be argued to be simply due to the very slight curvature used here. 
The ratio 

U l r  
a w a y  

in the logarithmic region of the present curved-wall flows is of the order of 1/100, so 
that even if the wall-region mean velocity profile was directly affected by curvature, 
the effect in the present case would be negligible. 

The conventional wall-similarity hypothesis does, however, appear to be applicable 
directly to wall flows with small curvature. Recent workers have proposed modifica- 
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FIGURE 11. Development of streamwise turbulence intensity, RN = 130000. Inner wall: 0, 
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FIGURE 12. Streamwise turbulence intensity in the central region, x / D  = 75. 0, RN = 30000; 
0, RN = 60000; A, RN = 130000. 

tions to the hypothesis (see, for example, Meroney & Bradshaw 1975), and the data 
for the highly curved, ‘inertia-dominated’ flow of Ellis & Joubert (1974) indicates 
significant curvature effects at  positions well inside the corresponding straight-wall 
logarithmic mean flow regions. 

4.2. Turbulence intensities 

The development of the streamwise r.m.s. turbulence intensity 4 at  the downstream 
end of the duct is shown for the highest Reynolds number in figure 1 1. The discrepan- 
cies between levels measured a t  the final two stations are reasonably small, and the 
turbulence structure is considered to have been very nearly fully developed at the 
final station at  this Reynolds number. Turbulence structure development at the two 
lower Reynolds numbers is then taken to have been practically complete. The dis- 
crepancies are similar to those of the mean velocity profile, which was fully developed 
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FIUuRE 13. Streamwise turbulence intensity in the wall region, x / D  = 75. 
Symbols as in figure 12. 

3 ,  

to a similar degree of certainty. The axial positions x / D  = GO, 75 used here may be 
compared with Comte-Bellot's result of a length of GOD being required for full develop- 
ment of her straight duct mean flow and turbulence structure, at more than twice 
the present maximum Reynolds number. 

The figure also permits a direct comparison of absolute turbulence intensities in 
the inner and outer regions of the central flow, and i t  is seen that the difference 
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FIGURE 16. Measured Reynolds-stress distributions, x / D  = 75. 0, - z / U k ;  A, -u.W/Ui; 
0, wall shear stress measurements. 

between intensities measured near each of the walls persists as a nearly constant 
displacement between the curves over a large part of the central flow. 

Figure 12 shows streamwise intensities in the fully developed central flow. A similar, 
regular Reynolds number dependence is evident for the inner- and straight-wall 
flows, and may exist for the outer-wall flow if the discrepancies are due to the small 
errors in traverse positioning mentioned earlier. 

Figure 13 gives a comparison of wall-region streamwise intensities. The simi- 
larity between profile shapes and their Reynolds number dependence is clear. 
Direct comparison of wall-region data for the three wall curvature cases a t  a 
single Reynolds number is given in figure 14. The displacement of the inner-wall 
data below, and the outer-wall data above, the straight-wall data is consistent 
with the earlier discussion of the turbulence energy equations. The results of 
Eskina,zi & Yeh ( 1  956) indicate a similar behaviour, with larger displacements com- 
patible with their larger degree of curvature. The general level of their data is, how- 
ever, much lower than that of the present results, which agree well with Comte-Bellot’s 
data for straight duct flow when the same methods of shear velocity estimation are 
used. 

The transverse turbulence intensities G and 8 in the central flow region are shown 
in figure 15. The data are similar for all three wall conditions, and both v” and 8 exhibit 
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FIGURE 17. Total turbulence energy in the central region, x / D  = 76. (a) Outer, ( b )  inner and 
( c )  straight wall: 0, RN = 30000; 0, RN = 60000; A, RN = 130000. (d) Comparison of 
means: 0, outer wall; 0, inner wall; 0, straight wall. 

a Reynolds number variation in the opposite sense to that found for the streamwise 
component C. 

Figure 16 shows the measured distributions of Reynolds stresses - UV and - UW, 
compared with the distributions expected from the wall shear measurements. The 
cross-wire technique is very sensitive to the existence of transverse mean velocities 
V and W ,  and cannot be corrected for these effects without a detailed knowledge of 
the yaw-angle distribution. The agreement within the inner flow region is therefore 
encouraging, and consistent with the conclusion of a very weak level of secondary 
flow, but the data for the outer region are probably better taken as confirmation of 
the existence of significant secondary flow levels, rather than as accurate measures of 
the shear-stress distributions. 

One implication of the earlier discussion of the turbulence intensity equations is that 
complete similarity between the flows is obtained only in terms of the total turbulence 
energy 4a“ = t(u” + 3 + w2), as it is only for this quantity, rather than the individual 
turbulence intensity components, that the equations are directly comparable. A similar 
proposition may be put for any one of the walI flow types for a range of Reynolds 
number variation: if a two-component turbulence model is considered, the scales 
determining the ‘active ’ and ‘inactive ’ components will have different levels of signifi- 
cance in determining each of the turbulence production, distribution and dissipation 
processes. For a range of low Reynolds numbers such as the present one, the ratios of 
active to inactive scales may vary significantly. It is then expected that the indi- 
vidual intensity components, which are all directly affected in complementary ways 
by the distributive processes, will exhibit much larger variation than the total 
turbulence energy, which encompasses the individual variations. 
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Tests of these propositions are shown in figure 17, where Q = (T2 +p+>)i. The 
straight-wall and inner-wall data (figure 17 b ,  c )  show comparatively little variation 
with Reynolds number. The wider scatter of the outer-wall data (figure 17a) 
essentially reflects the irregularities in the streamwise intensity component distri- 
butions (figure 12). The variation between data sets for the highest and lowest 
Reynolds numbers is small, and comparable to that for the other two wdl conditions. 

The means of the distributions for the three wall conditions are compared in figure 
17(d). The duct width D was taken as a common length scale in view of the absence of 
any more justifiable scale for ' shear-dominated ' flows. The. agreement between the 
distributions is reasonably good for y / D  less than approximately 0.3. The larger 
discrepancies evident for regions further from the wall may be attributed to the 
inadequacy of the common length scale, among other factors. 
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FIGURE 19. Comparison of spectra for inner-, outer- and straight-wall flows. RN = 60000, 
y* values as shown. 0, outer wall; 0 ,  inner wall; 0, straight wall. 

4.3. Energy spectra 
To investigate further the viability of a two-component turbulence model for curved 
flows, spectra were measured for the streamwise intensity componentF2 at  a series of 
comparable positions and Reynolds numbers for which the mean flow and turbulence 
distributions were considered fully developed. The spectra are presented in the 
non-dimensional form @' vs. k', where 

Here 0' is the non-dimensional intensity-normalized spectrum function, k' is the 
non-dimensional wavenumber and x l ,  x2,  . . . are the further non-dimensional para- 
meters required for description of the flow. The brackets denote a functional depen- 
dence. The streamwise, one-dimensional wavenumber k = 2nf / U, where f is frequency, 
by the usual Taylor-hypothesis definition. 

The dimensionless wavenumber k' is that suggested by Townsend (1956) for cor- 
relation of spectra within the constant-stress layer. Perry & Abell (1975) confirmed 
that a near-invariant wavenumber range of the normalized spectrum occurred on this 
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basis for data taken in the logarithmic mean flow region of their pipe flow. The present 
data for the logarithmic mean flow region for each type of wall are shown in figure 18. 
In  each case a clearly identifiable wavenumber range exists in which the spectrum 
function is of the form @’ = Jk’-l, where the constant J is invariant with both 
position in the flow field and Reynolds number. 

The range does not exist for data taken within the viscous region or within the 
central flow region (compare spectra for these regions given in figure 19). Kolmogorov- 
type inertial subranges, in which the spectrum function varies as k-5, are not clearly 
definable for any of the spectra. 

Figure 19 gives direct comparisons between spectra for the three different wall 
types, for a range of common dimensionless wall distances. The spectra demonstrate 
that the changes in streamwise turbulence intensity between the three flows are due 
to changes in intensity of the low wavenumber spectral components alone. The ratios 
(spectral intensity deviation/corresponding straight flow intensity) for low wave- 
numbers are larger for the outer-wall flow than for the inner wall flow, and increase 
as the central region is approached from each wall, in accordance with the earlier 
discussion. Instability in the spanwise position of the central flow structure could 
affect the low wavenumber ranges of the spectra. However, this would be expected to 
increase the measured low wavenumber levels of the inner- as well as the outer- 
region spectra, and the inner-region data do not support the possibility. The deviations 
are then taken to be due to changes in the turbulence processes as discussed earlier. 

The data may be broadly described in terms of a two-component model such as 
that proposed by Townsend for the wall region. The universal, ‘active’ component 
determined by the turbulent shear stress may be considered to be responsible for the 
common, high wavenumber parts of the spectra. The spectra for y* = yu,/v = 640 
correspond to y / D  = 0.25, and the active component is then seen to retain its signifi- 
cance in the central flow region. 

Following Bradshaw’s (1967) interpretation of the ‘inactive ’ component as being 
determined by the large-scale turbulence in the central flow, the low wavenumber 
differences between the spectra may be attributed to differences between the central- 
region flows, the most obvious of which in the present case is the existence of the 
Taylor-Goertler vortex array in the curved flow. A further implication then is that 
the effect of streamline curvature in all flow regions is controlled by changes in 
the central flow structure, rather than by changes in local stability or mixing-length 
parameters , 

5. Conclusions 
The data obtained here for a duct flow with very small curvature exhibit significant 

differences from those for straight duct flow. A further distinction seems necessary 
between the present ‘ shear-dominated ’ type of flow and the more highly curved, 
‘inertia-dominated ’ flows investigated in the past. Mean flow behaviour in the present 
case cannot be described by the central-flow similarity laws which have had some 
success for highly curved flows, while the conventional straight-wall form of the law 
of the wall gives good correlation of the present wall-region data. A structure inter- 
preted as a Taylor-Goertler vortex array was detected in t’he central region of the duct, 
and was similar to structures found in recent investigations of curved boundary layers. 
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An investigation of the momentum, energy and Reynolds-stress equations suggests 
that a significant mechanism by which the effects of streamline curvature are mani- 
fested is one of conservative reorientation of turbulent energy components, leading to 
changes in shear stress and a further ‘feedback’ effect through intensity changes. 
There is then no need to  propose additional, particularly ‘negative ’, turbulence 
energy production mechanisms, and a consistent interpretation of the equations for 
straight, curved and rotating flows is obtained. The interpretation also allows an 
estimate of the constant in Bradshaw’s curvature model to be developed from 
straight flow data, and the estimate is close to the value he recommends. 

The measured turbulence intensities follow a pattern generally consistent with the 
interpretation. In  particular, the distribution of total turbulence energy in the 
central region exhibits comparatively little variation with either changes in Reynolds 
number or changes in wall curvature, even though the data for the separate intensity 
components show significant variations. 

Energy spectra for the streamwise component are readily interpreted on the basis of 
a two-component turbulence model similar to that proposed by Townsend. A common, 
high wavenumber spectral range occurs for the corresponding spectra for inner, 
outer and straight wall flows, and is attributed to the ‘active’ component of the 
model, which then retains its significance in all flow regions. Differences between 
corresponding spectra are confined to the low wavenumber ends of the spectra, and 
are attributed to changes in the central-region large-scale turbulence structure, by 
comparison with Bradshaw’s interpretation of the ‘inactive’ component. This implies 
that the effects of streamline curvature throughout the flow are determined by the 
central region structure alone. 
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